A remark about dihedral group actions on spheres

Ian Hambleton

Abstract

We show that a finite dihedral group does not act pseudofreely and locally linearly on an evendimensional sphere S^{2k} , with k > 1. This answers a question of Kulkarni from 1982.

1. Introduction

In this note, we let $D_p = \langle a, b \, | \, a^p = b^2 = 1, \, bab = a^{-1} \rangle$ denote the finite dihedral group of order 2p, for p an odd prime. A famous theorem of Milnor [8] states that a finite dihedral group cannot act freely on a topological n-manifold with the mod 2 homology of S^n . More generally, a pseudofree action is one which is free outside of a discrete set of points. In [6, Theorem 7.4], Kulkarni studied orientation-preserving, pseudofree actions of finite groups G on manifolds which are $\mathbb{Z}/2$ -homology n-spheres, and found that, for n=2k, the group G must be (i) a periodic group which acts freely on S^{2k-1} , (ii) dihedral, or (iii) tetrahedral, octahedral, or icoshedral (when k=1). The first case occurs as the suspension of any free action of a periodic group on S^{2k-1} , and the other cases already appear for orthogonal actions on S^2 . Kulkarni asked whether the second case could actually occur on S^{2k} if k>1. This turns out to be impossible.

THEOREM A. The dihedral group $G = D_p$, with p an odd prime, cannot act pseudofreely and locally linearly on S^{2k} , preserving the orientation, for k > 1.

For k even, we show that there does not even exist a finite pseudofree G-CW complex $X \simeq S^{2k}$, with $X^G = \emptyset$. For all odd integers $k \geqslant 1$, such complexes do exist, for example, by taking the join of S^2 with the action given by $G \subset SO(3)$ and a finite Swan complex for G (see [3, 9]).

REMARK 1.1. My interest in this question was prompted by the recent paper of Edmonds [2], where he proves this result for k even. Our methods seem rather different. The discussion by Edmonds in [2, 4.1] combined with Theorem A shows that there are no effective pseudofree dihedral actions on S^n , for n > 2, even if some elements of G are allowed to reverse orientation.

2. The chain complex

In this section, we let $G = D_p$ and suppose that X is a finite G-CW complex such that $X \simeq S^{2k}$, with k > 0, and $X^G = \emptyset$. We further assume that the G-action is pseudofree and induces the identity on homology. It follows from [6, Proposition 7.3] that every non-identity element of G fixes exactly two points. We assume that $X^G = \emptyset$ since this is a necessary condition for a locally

²⁰⁰⁰ Mathematics Subject Classification 57S17, 55U15 (primary).

This research was partially supported by NSERC Discovery Grant A4000.

linear, pseudo-free action on a sphere (by Milnor's theorem). Let $\mathbf{C} = \mathbf{C}(X^?)$) denote the chain complex of X over the orbit category $\mathbb{Z}\Gamma := \mathbb{Z}\operatorname{Or}_{\mathcal{F}}G$ with respect to the family \mathcal{F} of all proper subgroups of G (see [1] or [7] for this theory). The notation means that $\mathbf{C}_i(G/U) = C_i(X^U)$, for $U \leq G$, and the action of $N_G(U)/U$ on $\mathbf{C}_i(G/U)$ induced by the G-action on X is expressed algebraically through the functorial properties of \mathbf{C} .

Our pseudofree assumption on the G-CW complex X implies that $C_i(G/U) = 0$, if $U \neq 1$ is a non-trivial subgroup of G, and i > 0. Therefore,

$$H_i(\mathbf{C})(G/U) = 0$$
 if $i > 0$, for all $U \neq 1$. (1)

From the homology of S^{2k} we have

$$H_0(\mathbf{C})(G/1) = \mathbb{Z}$$
 and $H_i(\mathbf{C})(G/1) = 0$ for $i \neq 0, 2k$. (2)

In addition, since we assumed that G acts trivially on the homology of S^{2k} , we have

$$H_{2k}(\mathbf{C})(G/1) = \mathbb{Z}$$
, with trivial G-action. (3)

Let $H = \langle a \rangle$ and $K = \langle b \rangle$ denote particular subgroups of G, of order p and 2, respectively. The orbit types give the chain group

$$\mathbf{C}_0 = \mathbb{Z}[G/H^?] \oplus \mathbb{Z}[G/K^?] \oplus \mathbb{Z}[G/K^?],$$

where $\mathbb{Z}[G/V^?]$ denotes the free right module over the orbit category with values

$$\mathbb{Z}[G/V](G/U) = \mathbb{Z}\operatorname{Map}_{G}(G/U, G/V),$$

for all proper subgroups $U \leqslant G$. In particular, the homology of the fixed sets is given by

$$H_0(\mathbf{C})(G/H) = \mathbb{Z}[G/H]^? [(G/H)] = \mathbb{Z}[N_G(H)/H] = \mathbb{Z}[\mathbb{Z}/2]$$
(4)

and

$$H_0(\mathbf{C})(G/K) = (\mathbb{Z}[G/K]^?](G/K)^2 = (\mathbb{Z}[N_G(K)/K])^2 = \mathbb{Z} \oplus \mathbb{Z}.$$
 (5)

DEFINITION 2.1. A finite $\mathbb{Z}\Gamma$ -chain complex \mathbf{C} of finitely generated free $\mathbb{Z}\Gamma$ -modules, which satisfies the algebraic conditions (1)–(5), is called a pseudofree $\mathbb{Z}\Gamma$ -chain complex with the \mathbb{Z} -homology of S^{2k} .

One example of such a complex arises from the standard orthogonal action Y = S(V) of the dihedral group on S^2 (for G as a subgroup of SO(3)). The SO(3)-representation $V = W \oplus \mathbb{R}_-$ is the sum of the standard 2-dimensional real representation W (given by the action on a regular 2p-gon in the plane) and the non-trivial 1-dimensional real representation \mathbb{R}_- . The chain complex $\mathbf{D} = \mathbf{C}(Y^?)$ over the orbit category has the form

where $H_2(\mathbf{D}) = \underline{\mathbb{Z}}_0$ is the $\mathbb{Z}\Gamma$ -module with value $\underline{\mathbb{Z}}_0(G/1) = \mathbb{Z}$, and zero otherwise. The module $H_0 := H_0(\mathbf{D})$ has value $H_0(G/1) = \mathbb{Z}$, and values at G/H and G/K as listed above. In general, for any pseudofree $\mathbb{Z}\Gamma$ -chain complex \mathbf{C} with the \mathbb{Z} -homology of S^{2k} , we have $H_{2k}(\mathbf{C}) = \underline{\mathbb{Z}}_0$ and $H_0(\mathbf{C}) = H_0(\mathbf{D})$.

LEMMA 2.2. Suppose that \mathbb{C} is a pseudofree $\mathbb{Z}\Gamma$ -chain complex with the \mathbb{Z} -homology of S^{2k} . Then the complex \mathbb{C} is chain homotopy equivalent to a finite free 2k-dimensional chain

complex \mathbf{C}' , with $\mathbf{C}'_i = \mathbf{C}_i$ for $i \geqslant 4$, whose initial part $\mathbf{C}'_2 \to \mathbf{C}'_1 \to \mathbf{C}'_0$ is chain isomorphic to \mathbf{D} .

Proof. Since $H_0(\mathbf{C}) = H_0(\mathbf{D})$, this follows from the version of Schanuel's lemma over the orbit category given in the proof of [4, Lemma 8.12].

An immediate consequence is the statement of Theorem A for k even.

COROLLARY 2.3 (Edmonds [2]). Let $G = D_p$. If k is even, there is no effective pseudofree G-action on a finite G-CW complex $X \simeq S^{2k}$, inducing the identity on homology.

Proof. Let $\mathbf{C} = \mathbf{C}(X^?)$ denote the chain complex over the orbit category of such an action. From the chain equivalent complex $\mathbf{C}' \simeq \mathbf{C}$, we can extract a periodic resolution

$$0 \longrightarrow \underline{\mathbb{Z}}_0 \longrightarrow \mathbf{C}_{2k} \longrightarrow \mathbf{C}_{2k-1} \longrightarrow \cdots \longrightarrow \mathbf{C}_4 \longrightarrow \mathbf{C}_3'' \longrightarrow \underline{\mathbb{Z}}_0 \longrightarrow 0$$

since $H_2(\mathbf{D}) = H_{2k}(\mathbf{C}) = \underline{\mathbb{Z}}_0$, where \mathbf{C}_3'' is a direct sum of copies of $\mathbb{Z}[G/1]$. By evaluating at G/1, we obtain a periodic projective resolution from \mathbb{Z} to \mathbb{Z} over $\mathbb{Z}G$ of length (2k-2). Since $G = D_p$ has periodic cohomology of period 4 (and not 2), we conclude that k is odd.

Proof of Theorem A (k odd). Suppose, if possible, that we have a locally linear and orientation-preserving pseudofree topological action of G on S^{2k} , for some odd integer $k \geq 3$. Then there exists a finite G-CW complex $X \simeq S^{2k}$, and a chain homotopy equivalence $\mathbf{C}(X^?) \simeq \mathbf{C}'$ provided by Lemma 2.2. We may identify the singular set $\mathrm{Sing}(X)$ of X with the singular set of the given action on S^{2k} . Let $\{x_0, x_1, x_2\} \subset \mathrm{Sing}(X)$ denote representatives of the distinct G-orbits of singular points (with $G_{x_0} = H$, and $G_{x_i} = K$ for i = 1, 2). Around each singular point x_i , with $0 \leq i \leq 2$, we can choose a linearly embedded 2-disk slice $G \times_{G_{x_i}} D^2 \subset S^{2k}$, since the action (S^{2k}, G) is locally linear. This gives a G-equivariant embedding

$$f_0: \bigcup_{0 \le i \le 2} (G \times_{G_{x_i}} D^2) \subset S^{2k}.$$

Since the pseudofree orbit structure of the standard G-action on $S^2 = S(V)$ is the same for any locally linear action on S^{2k} , we can consider f_0 to be a G-equivariant embedding of a tubular neighborhood of the singular set of S(V) into S^{2k} . By obstruction theory, and since $k \ge 3$, we can extend this embedding f_0 to a G-equivariant embedding $f: S(V) \subset S^{2k}$. Non-equivariantly such an embedding of $S^2 \subset S^{2k}$ is isotopic to a standard embedding. We have thus obtained a dihedral action on S^{2k} of the type considered in my earlier joint work with Pedersen [5], namely, one conjugate to 'a topological action on a sphere which is free off a standard proper subsphere, and given by a S(V) on the subsphere'. However, we proved in [5, Theorem 7.11] that such an action exists if and only if the representation V on the subsphere contains two \mathbb{R}_- factors. Since this is not the case for the standard SO(3)-representation V of G, we conclude that a pseudofree G-action on S^{2k} does not exist for k > 1.

Acknowledgement. The author would like to thank the Max Planck Institut für Mathematik in Bonn for its hospitality and support while this work was done.

References

- 1. T. TON DIECK, 'Transformation groups', Arch. Math. (Basel) 8 (1987) x+312.
- 2. A. L. Edmonds, 'Pseudofree group actions on spheres', Proc. Amer. Math. Soc. 138 (2010) 2203–2208.

- 3. S. GALOVICH, I. REINER and S. ULLOM, 'Class groups for integral representations of metacyclic groups', Mathematika 19 (1972) 105-111.
- 4. I. HAMBLETON, S. PAMUK and E. YALÇIN, 'Equivariant CW-complexes and the orbit category', Comment. Math. Helv., arXiv:0807.3357v3 [math.AT], to appear.
- 5. I. HAMBLETON and E. K. PEDERSEN, 'Bounded surgery and dihedral group actions on spheres', J. Amer. Math. Soc. 4 (1991) 105-126.
- **6.** R. S. Kulkarni, 'Pseudofree actions and Hurwitz's 84(g-1) theorem', Math. Ann. 261 (1982) 209–226.
- 7. W. LÜCK, Transformation groups and algebraic K-theory, Lecture Notes in Mathematics 1408 (Springer, Berlin, 1989).
- 8. J. MILNOR, 'Groups which act on Sⁿ without fixed points', Amer. J. Math. 79 (1957) 623–630. 9. R. G. Swan, 'Periodic resolutions for finite groups', Ann. of Math. (2) 72 (1960) 267–291.

Ian Hambleton Department of Mathematics & Statistics McMaster University Hamilton, ON Canada L8S 4K1

hambleton@mcmaster.ca